Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

نویسندگان

  • Tippapha Pisithkul
  • Tyler B. Jacobson
  • Thomas J. O'Brien
  • David M. Stevenson
  • Daniel Amador-Noguez
  • F. E. Löffler
چکیده

An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NovoCIB IMPDH Services

The oxidation of IMP to XMP is considered as the pivotal step in the biosynthesis of guanine nucleotide, whose pool controls cell proliferation and many other major cellular processes. The decrease in guanine nucleotide resulting from IMPDH inhibition interrupts the nucleic acid synthesis in proliferating cells. The involvement of IMPDH in de novo guanine nucleotide biosynthesis makes IMPDH a c...

متن کامل

Decreased Purine Synthesis during Amino Acid Starvation

Normal human lymphoblasts starved for each of several essential, but not nonessential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [“C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino ac...

متن کامل

Equilibrative Nucleoside Transporters 1 and 4: Which One Is a Better Target for Cardioprotection Against Ischemia–Reperfusion Injury?

The cardioprotective effects of adenosine and adenosine receptor agonists have been studied extensively. However, their therapeutic outcomes in ischemic heart disease are limited by systemic side effects such as hypotension, bradycardia, and sedation. Equilibrative nucleoside transporter (ENT) inhibitors may be an alternative. By reducing the uptake of extracellular adenosine, ENT1 inhibitors p...

متن کامل

Activation of the de novo pathway for pyridine nucleotide biosynthesis prior to ricinine biosynthesis in castor beans.

The ricinine content of etiolated seedlings of Ricinus communis increased nearly 12-fold over a 4-day period. In plants quinolinic acid is an intermediate in the de novo pathway for the synthesis of pyridine nucleotides. The only known enzyme in the de novo pathway for pyridine nucleotide biosynthesis, quinolinic acid phosphoribosyltransferase, increased 6-fold in activity over a 4-day period w...

متن کامل

Natural peptides and proteins: potent tyrosinase inhibitors

Background and objectives: Tyrosinase is a copper containing oxidase which is crucial for controlling the production of melanin in creatures such as bacteria, fungi, plants and mammals. It is involved in the first two steps of melanin biosynthesis and leads to pigmentation and different types of cancer such as melanoma. Also, it is responsible for browning of fruits and vegetab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2015